Description | This entry represents a conserved site found in this group of proteins which includes two conserved histidine residues. In L and M chains, the first histidine is a ligand of the magnesium ion of the special pair bacteriochlorophyll, the second is a ligand of a ferrous non-haem iron atom. In photosystem II these two histidines are thought to play a similar role.This entry describes the photosynthetic reaction centre L and M subunits, and the homologous D1 (PsbA) and D2 (PsbD) photosystem II (PSII) reaction centre proteins from cyanobacteria, algae and plants. The D1 and D2 proteins only show approximately 15% sequence homology with the L and M subunits, however the conserved amino acids correspond to the binding sites of the phytochemically active cofactors. As a result, the reaction centres (RCs) of purple photosynthetic bacteria and PSII display considerable structural similarity in terms of cofactor organisation.The D1 and D2 proteins occur as a heterodimer that form the reaction core of PSII, a multisubunit protein-pigment complex containing over forty different cofactors, which are anchored in the cell membrane in cyanobacteria, and in the thylakoid membrane in algae and plants. Upon absorption of light energy, the D1/D2 heterodimer undergoes charge separation, and the electrons are transferred from the primary donor (chlorophyll a) via pheophytin to the primary acceptor quinone Qa, then to the secondary acceptor Qb, which like the bacterial system, culminates in the production of ATP. However, PSII has an additional function over the bacterial system. At the oxidising side of PSII, a redox-active residue in the D1 protein reduces P680, the oxidised tyrosine then withdrawing electrons from a manganese cluster, which in turn withdraw electrons from water, leading to the splitting of water and the formation of molecular oxygen. PSII thus provides a source of electrons that can be used by photosystem I to produce the reducing power (NADPH) required to convert CO2 to glucose [ , ].Also in this entry is the light-dependent chlorophyll f synthase (ChlF) from cyanobacteria such as Chlorogloeopsis fritschii. ChlF synthesizes chlorophyll f or chlorophyllide f, which is able to absorb far red light, probably by oxidation of chlorophyll a or chlorophyllide a and reduction of plastoquinone [ ]. | Name | Photosynthetic reaction centre, L/M, conserved site |
Short Name | Photo_RC_L/M_CS | Type | Conserved_site |