help  | faq  | software  | BAR
Hide

Oops!

https://bar.utoronto.ca/thalemine/service/ is incorrect
Hide Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.

Protein Domain : IPR020884

Description  The CPA2 family is a moderately large family (over 100 sequenced members) from bacteria, archaea and eukaryotes. Among the functionally well-characterised members of the family are (1) the KefB/KefC K+ efflux proteins of Escherichia coli which may be capable of catalysing both K+/H+ antiport and K+ uniport, depending on conditions [ , ], (2) the Na+/H+ antiporter of Enterococcus hirae [] and (3) the K+/H+ antiporter of Saccharomyces cerevisiae. It has been proposed that under normal physiological conditions, these proteins may function by essentially the same mechanism [].KefC and KefB of E. coli are responsible for glutathione-gated K+ efflux [ , ]. Each of these proteins consists of a transmembrane hydrophobic N-terminal domain, and a less well-conserved C-terminal hydrophilic domain. Each protein interacts with a second protein encoded by genes that overlap the gene encoding the primary transporter. The KefB ancillary protein is YheR. The ancillary proteins stimulate transport activity about 10-fold []. They are important for cell survival during exposure to toxic metabolites, possibly because they can release K+, allowing H+ uptake. Activation of the KefB or KefC K+ efflux system only occurs in the presence of glutathione and a reactive electrophile such as methylglyoxal or N-ethylmaleimide. Formation of the methylglyoxal-glutathione conjugate, S-lactoylglutathione, is catalysed by glyoxalase I, and S-lactoylglutathione activates KefB and KefC [ ]. H+ uptake (acidification of the cytoplasm) accompanying or following K+ efflux may serve as a further protective mechanism against electrophile toxicity [, ]. Inhibition of transport by glutathione is enhanced by NADH []. Name  Glutathione-regulated potassium-efflux system protein KefB
Short Name  K_H_efflux_KefB Type  Family
Quick Links:
 

9 Publications

Genomics

1 Cross References

 

Other

0 Child Features

1 Data Sets

0 Parent Features

0 Protein Domain Regions