Description | This entry includes Host cell factor 1 (HCF1) and Host cell factor 2 (HCF2) from humans. They contain an N-terminal kelch domain and a C-terminal FnIII domain. However, HCF2 is smaller than HCF-1, lacking the complete central region including the HCF1 specific repeats and as a result is not subject to proteolytic processing [ ]. This entry also includes their Drosophila melanogaster homologue, dHCF, which is involved in both activation and repression of transcription during fly development []. Host cell factor homologue hcf-1 from C. elegans controls the cell cycle through mitotic histone phosphorylation modulation and negatively regulates responses to environmental stresses [].HCF1 is associated with the activation and repression of gene expression. It is brought to specific promoters by association with DNA-sequence-specific transcription factors such as Sp1, GABP, YY1, Ronin/THAP11, and E2F1 and E2F4 [ ]. HCFC1 recruits and is a part of several different complexes, including the SET1 histone methyltransferase complex (transcription activation), the SIN3 histone deacetylase complex (transcription repression) [], the THAP1/THAP3-HCFC1-OGT complex (required for the regulation of the transcriptional activity of RRM1) [], and the NSL complex (acetylation of nucleosomal histone H4) [].HCF2 is involved in activation of differentiation and morphogenesis gene expression programs, and in parallel in inhibition of cellular growth and metabolism [ ]. | Name | Host cell factor |
Short Name | HCF1/2 | Type | Family |