help  | faq  | software  | BAR
Hide Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.

Protein Domain : IPR023216

Description  This entry represents the SKI/SnoN family of proteins, which are the products of the oncogenic sno gene. This gene was identified based on its homology to v-ski, the transforming component of the Sloan-Kettering virus. Both Ski and SnoN are potent negative regulators of TGF-beta [ ]. Overexpression of Ski or SnoN results in oncogenic transformation of avian fibroblasts; however it may also result in terminal differentiation and therefore the Ski/SnoN mechanism of action is thought to be complex [].These proteins do not have catalytic or DNA-binding activity and therefore function primarily through interaction with other proteins, acting as transcriptional cofactors. Despite their lack of DNA-binding ability, their primary function is related to transcriptional regulation, in particular the negative regulation of TGF-beta signalling [ , ]. Ski/SnoN interact concurrently with co-Smad and R-Smad and in doing so block the ability of the Smad complexes to activate transcription of the TGF-beta target genes []. Binding of Ski/SnoN may additionally stabilise the Smad heteromer on DNA, therefore preventing further binding of active Smad complexes []. As Smad complexes critically mediate the inhibitory signals of TGF-beta in epithelial cells, high levels of SKI/SnoN may promote cell proliferation. They repress gene transcription recruiting diverse corepressors and histone deacetylases and stablish cross-regulatory mechanisms with TGF-beta/Smad pathway that control the magnitude and duration of TGF-beta signals. The alteration in regulatory processes may lead to disease development [].High levels of SnoN have been shown to stabilise p53 with a resultant increase in premature senescence. SnoN interacts with the PML protein and is then recruited to the PML nuclear bodies, resulting in stabilisation of p53 and premature senescence [ ]. Name  Transcription regulator SKI/SnoN
Short Name  Tscrpt_reg_SKI_SnoN Type  Family
Quick Links:
 

6 Publications

Genomics

1 Cross References

 

Other

0 Child Features

1 Data Sets

0 Parent Features

0 Protein Domain Regions