help  | faq  | software  | BAR
Hide

Oops!

https://bar.utoronto.ca/thalemine/service/ is incorrect
Hide Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.

Protein Domain : IPR012226

Description  Members of this group are signal transduction proteins that are direct oxygen sensors and are involved in regulation of cellular processes via the effector molecule cyclic diguanylate (c-di-GMP, bis(3',5')-cyclic diguanylic acid). They contain PAS/PAC, GGDEF, and EAL domains and have diguanylate cyclase and phosphodiesterase activities. Related groups with similar domain architectures contain different versions of PAS/PAC domain, and are thought to have different, often not yet determined biological functions.Escherichia coli Dos (YddU or DosP) and Komagataeibacter xylinus (Gluconacetobacter xylinus or Acetobacter xylinum) PdeA1 proteins have been shown to be direct, haem-based oxygen sensors [ , , ]. Their N-terminal PAS domains are responsible for haem-binding [, ]. PAS/PAC is a ubiquitous intracellular sensory domain. It is located in the cytoplasm and sense changes in redox potential in the electron transport system or overall cellular redox status. PAS domains can monitor changes in light, oxygen or small ligands in a cell, and sense environmental factors that cross the cell membrane and/or affect cell metabolism [, , ]. In the haem-containing subgroup of PAS domains, the haem pocket acts as a ligand-specific trap []. The ligand binding to a haem-containing PAS domain leads to either activation or inhibition of a regulated (catalytic) domain (here, GGDEF and/or EAL domains). Phosphodiesterase activity with cAMP of E. coli Dos has been shown to be regulated by the haem redox state []. Similarly, Komagataeibacter xylinus PdeA1 is regulated by reversible binding of O2to the haem [ ].The catalytic function of the members of this group has also been experimentally determined.Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of beta-1,4-glucan (cellulose) synthase in Komagataeibacter xylinus [ ]. In a study of the regulation of biosynthesis of extracellular cellulose in Komagataeibacter xylinus [], the search for the enzymes that synthesise and hydrolyse cyclic di-GMP resulted in the identification of six proteins with identical domain architecture containing PAS, GGDEF and EAL domains. Three of them exhibited diguanylate cyclase activity (Dgc1-3), and three others - phosphodiesterase activity (PdeA1-3) [, ]. Likewise, E. coli Dos has been shown to have phosphodiesterase activity [].Genetic complementation using genes from three different bacteria encoding proteins with GGDEF domains as the only element in common indicate that the GGDEF domain is responsible for the diguanylate cyclase activity of these proteins [ ]. Even prior to these results, the notion that the GGDEF domain is a diguanylate cyclase was supported by the detailed analysis of its sequence, which shows conservation of the proposed nucleotide-binding loop in alignment with eukaryotic adenylate cyclases [].By exclusion, the EAL domain emerged as the best candidate for the role of c-di-GMP phosphodiesterase. Indeed, the sequence of this domain contains several conserved aspartates, which could participate in metal binding and form a phosphodiesterase active site [ ]. Name  Diguanylate cyclase/phosphodiesterase
Short Name  Diguanyl_cyclase/Pdiesterase Type  Family
Quick Links:
 

13 Publications

Genomics

1 Cross References

 

Other

0 Child Features

1 Data Sets

1 Parent Features

0 Protein Domain Regions