Description | DOCK family members are evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho-family GTPases [ ]. DOCK proteins are required during several cellular processes, such as cell motility and phagocytosis. The N-terminal SH3 domain of the DOCK proteins functions as an inhibitor of GEF, which can be relieved upon its binding to the ELMO1-3 adaptor proteins, after their binding to active RhoG at the plasma membrane [, ]. DOCK family proteins are categorised into four subfamilies based on their sequence homology: DOCK-A subfamily (DOCK1/180, 2, 5), DOCK-B subfamily (DOCK3, 4), DOCK-C subfamily (DOCK6, 7, 8), DOCK-D subfamily (DOCK9, 10, 11) []. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker).DOCK2 is a hematopoietic cell-specific, class A DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It plays an important role in lymphocyte migration and activation, T-cell differentiation, neutrophil chemotaxis, and type I interferon induction [ , , ].This entry represents the DHR-2 domain of DOCK2, which contains the catalytic GEF activity for Rac. Class A DOCKs, like DOCK2, are specific GEFs for Rac. DOCK2 then activates RAC1 and RAC2, but not CDC42. It may also participate in IL2 transcriptional activation via the activation of RAC2 [ ]. | Name | Dedicator of cytokinesis protein 2, DHR2 domain |
Short Name | DHR2_DOCK2 | Type | Domain |