help  | faq  | software  | BAR

Protein Domain : IPR003938

Description  Potassium channels are the most diverse group of the ion channel family [ , ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K +channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers [ ]. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes [ ]. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K +channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K +selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K +across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo-or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K +channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K +channels; and three types of calcium (Ca)-activated K +channels (BK, IK and SK) [ ]. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K +channel alpha-subunits that possess two P-domains. These are usually highly regulated K +selective leak channels. The first EAG K+ channel was identified in Drosophila melanogaster (Fruit fly), following a screen for mutations giving rise to behavioural abnormalities. Disruption of the Eag gene caused an ether-induced, leg-shaking behaviour. Subsequent studies have revealed a conserved multi-gene family of EAG-like K+ channels, which are present in human and many other species. Based on the varying functional properties of the channels, the family has been divided into 3 subfamilies: EAG, ELK and ERG. Interestingly, Caenorhabditis elegans appears to lack the ELK type []. Name  Potassium channel, voltage-dependent, EAG/ELK/ERG
Short Name  K_chnl_volt-dep_EAG/ELK/ERG Type  Family
Quick Links:
 
Quick Links:
 

8 Publications

Genomics

1 Cross References

 

Other

4 Child Features

1 Data Sets

0 Parent Features

312 Protein Domain Regions