Description | The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) [ , ] is a major carbohydrate transport system in bacteria. The PTS catalyses the phosphorylation of incoming sugar substrates and coupled with translocation across the cell membrane, makes the PTS a link between the uptake and metabolism of sugars.The general mechanism of the PTS is the following: a phosphoryl group from phosphoenolpyruvate (PEP) is transferred via a signal transduction pathway, to enzyme I (EI) which in turn transfers it to a phosphoryl carrier, the histidine protein (HPr). Phospho-HPr then transfers the phosphoryl group to a sugar-specific permease, a membrane-bound complex known as enzyme 2 (EII), which transports the sugar to the cell. EII consists of at least three structurally distinct domains IIA, IIB and IIC [ ]. These can either be fused together in a single polypeptide chain or exist as two or three interactive chains, formerly called enzymes II (EII) and III (EIII).This entry represents a family of PTS enzyme II proteins in which all three domains are found in the same polypeptide chain and which appear to have a broad specificity for beta-glucosides including salicin (beta-D-glucose-1-salicylate) and arbutin (hydroquinone-O-beta-D-glucopyranoside) [ ]. These are distinct from the closely related sucrose-specific and trehalose-specific PTS transporters. | Name | Phosphotransferase system, beta-glucoside-specific IIABC component |
Short Name | PTS_IIABC_b_glu | Type | Family |