help  | faq  | software  | BAR
Hide Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.Your session has expired. If you were not logged in, your data (including query history and any lists you made) has been cleared.

Protein Domain : IPR000482

Description  5-hydroxytryptamine (5-HT) or serotonin, is a neurotransmitter that it is primarily found in the gastrointestinal (GI) tract, platelets, and in the central nervous system (CNS). It is implicated in a vast array of physiological and pathophysiological pathways. Receptors for 5-HT mediate both excitatory and inhibitory neurotransmission, and modulate the release of many neurotransmitters including glutamate, GABA, dopamine, epinephrine/norepinephrine, and acetylcholine, as well as many hormones, including oxytocin, prolactin, vasopressin and cortisol. In the CNS, 5-HT receptors can influence various neurological processes, such as aggression, anxiety and appetite and, as a, result are the target of a variety of pharmaceutical drugs, including many antidepressants, antipsychotics and anorectics [ ].The 5-HT receptors are grouped into a number of distinct subtypes, classified according to their antagonist susceptibilities and their affinities for 5-HT. With the exception of the 5-HT3 receptor, which is a ligand-gated ion channel [], all 5-HT receptors are members of the rhodopsin-like G protein-coupled receptor family [], and they activate an intracellular second messenger cascade to produce their responses.The 5-HT2 receptors mediate many of the central and peripheral physiologic functions of 5-hydroxytryptamine. The original 5HT2 receptor (now renamed as the 5-HT2A receptor) was initially classified according to its ability to display micromolar affinity for 5-HT, to be labelled with [3H]spiperone and by its susceptibility to 5-HT antagonists. At least 3 members of the 5HT2 receptor subfamily exist (5-HT2A, 5-HT2B, 5-HT2C), all of which share a high degree of sequence similarity and couple to Gq/G11 to stimulate the phosphoinositide pathway and elevate cytosolic calcium. Cardiovascular effects include contraction of blood vessels and shape changes in platelets; central nervous system effects include neuronal sensitisation to tactile stimuli and mediation of some of the effects of phenylisopropylamine hallucinogens. 5-HT2 receptors display functional selectivity in which the same agonist in different cell types or different agonists in the same cell type can differentially activate multiple, distinct signalling pathways [].The 5-HT2B receptor has been shown to be distributed in a range of tissues, including human gut, brain and the cardiovascular system [ , , , ]. In the cardiovascular system the 5-HT2B receptor regulates cardiac structure and function []. 5-HT2B receptor stimulation can also lead to pathological proliferation of cardiac valve fibroblasts [], which, with chronic overstimulation, can lead to a severe valvulopathy. In addition, the 5-HT2B receptor has been shown to be involved in pulmonary hypertension via vasoconstriction []. As a result 5-HT2B antagonists have been developed as treatments for chronic heart disease [, ]. In the CNS the 5-HT2B receptor has been shown to be involved in presynaptic inhibition, leading to behavioural effects [], since it is important to the normal regulation of serotonin levels in the blood plasma [] and abnormal release produced by drugs such as MDMA []. Name  5-Hydroxytryptamine 2B receptor
Short Name  5HT2B_rcpt Type  Family
Quick Links:
 

13 Publications

Genomics

1 Cross References

 

Other

0 Child Features

1 Data Sets

1 Parent Features

0 Protein Domain Regions