Description | The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) [ , ] is a major carbohydrate transport system in bacteria. The PTS catalyses the phosphorylation of incoming sugar substrates and coupled with translocation across the cell membrane, makes the PTS a link between the uptake and metabolism of sugars.The general mechanism of the PTS is the following: a phosphoryl group from phosphoenolpyruvate (PEP) is transferred via a signal transduction pathway, to enzyme I (EI) which in turn transfers it to a phosphoryl carrier, the histidine protein (HPr). Phospho-HPr then transfers the phosphoryl group to a sugar-specific permease, a membrane-bound complex known as enzyme 2 (EII), which transports the sugar to the cell. EII consists of at least three structurally distinct domains IIA, IIB and IIC [ ]. These can either be fused together in a single polypeptide chain or exist as two or three interactive chains, formerly called enzymes II (EII) and III (EIII). These sequences, which are about 160 residues in length, are closely related to the fructose-specific phosphotransferase (PTS) system IIA component. It is a regulatory protein found only in species with a phosphoenolpyruvate-protein phosphotransferase (enzyme I of PTS systems) and an HPr-like phosphocarrier protein, but not all species have a IIC-like permease. Members of this family are found in Proteobacteria, Chlamydia, and the spirochete Treponema pallidum [ , ]. | Name | Phosphotransferase system, IIA-like nitrogen-regulatory protein PtsN |
Short Name | PTS_Nitro_regul | Type | Family |