help  | faq  | software  | BAR

Protein Domain : IPR020584

Description  The recA gene product is a multifunctional enzyme that plays a role in homologous recombination, DNA repair and induction of the SOS response [ ]. In homologous recombination, the protein functions as a DNA-dependent ATPase, promoting synapsis, heteroduplex formation and strand exchange between homologous DNAs []. RecA also acts as a protease cofactor that promotes autodigestion of the lexA product and phage repressors. The proteolytic inactivation of the lexA repressor by an activated form of recA may cause a derepression of the 20 or so genes involved in the SOS response, which regulates DNA repair, induced mutagenesis, delayed cell division and prophage induction in response to DNA damage [].RecA is a protein of about 350 amino acid residues. Its sequence is very well conserved [ , , ] among eubacterial species. It is also found in the chloroplast of plants []. RecA-like proteins are found in archaea and diverse eukaryotic organisms, like fission yeast, mouse or human. In the filament visualised by X-ray crystallography, β-strand 3, the loop C-terminal to β-strand 2, and α-helix D of the core domain form one surface that packs against αa-helix A and β-strand 0 (the N-terminal domain) of an adjacent monomer during polymerisation []. The core ATP-binding site domain is well conserved, with 14 invariant residues. It contains the nucleotide binding loop between β-strand 1 and α-helix C. The Escherichia coli sequence GPESSGKT matches the consensus sequence of amino acids (G/A)XXXXGK(T/S) for the Walker A box (also referred to as the P-loop) found in a number of nucleoside triphosphate (NTP)-binding proteins. Another nucleotide binding motif, the Walker B box is found at β-strand 4 in the RecA structure. The Walker B box is characterised by four hydrophobic amino acids followed by an acidic residue (usually aspartate). Nucleotide specificity and additional ATP-binding interactions are contributed by the amino acid residues at β-strand 2 and the loop C-terminal to that strand, all of which are greater than 90% conserved among bacterial RecA proteins.This signature pattern is specific for the bacterial and chloroplastic RecA protein, and covers the most conserved region within these proteins, namely a nonapeptide located in the middle of the sequence and which is part of the monomer-monomer interface in a recA filament. Name  DNA recombination/repair protein RecA, conserved site
Short Name  DNA_recomb/repair_RecA_CS Type  Conserved_site
Quick Links:
 
Quick Links:
 

6 Publications

Genomics

1 Cross References

 

Other

0 Child Features

1 Data Sets

0 Parent Features

6 Protein Domain Regions